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Abstract: Cancer metastasis accounts for most of the mortality associated with solid tumors. How-
ever, antimetastatic drugs are not available on the market. One of the important biological events
leading to metastasis is the epithelial to mesenchymal transition (EMT) induced by cytokines, namely
transforming growth-factor-β (TGF-β). Although several classes of inhibitors targeting TGF-β and
its receptor have been developed, they have shown profound clinical side effects. We focused on
our synthetic compound, HPH-15, which has shown anti-fibrotic activity via the blockade of the
TGF-β Smad-dependent signaling. In this study, 10 µM of HPH-15 was found to exhibit anti-cell
migration and anti-EMT activities in non-small-cell lung cancer (NSCLC) cells. Although higher
concentrations are required, the anti-EMT activity of HPH-15 has also been observed in 3D-cultured
NSCLC cells. A mechanistic study showed that HPH-15 inhibits downstream TGF-β signaling. This
downstream inhibition blocks the expression of cytokines such as TGF-β, leading to the next cycle
of Smad-dependent and -independent signaling. HPH-15 has AMPK-activation activity, but a rela-
tionship between AMPK activation and anti-EMT/cell migration was not observed. Taken together,
HPH-15 may lead to the development of antimetastatic drugs with a new mechanism of action.

Keywords: anti-cell migration; anti-epithelial to mesenchymal transition (EMT); transforming growth
factor-β (TGF-β); non-small-cell lung cancer (NSCLC) cells; Smad

1. Introduction

Although new and effective therapies are constantly being developed for some types
of cancers, cancer remains one of the leading causes of death worldwide [1]. The ability
of cancer cells to easily metastasize makes cancer treatment particularly difficult. Cancer
metastasis is the migration of cancer cells from the primary tumor to distant locations
through blood/lymphatic vessels to form new tumors in remote organs [2,3]. Metastasis
accounts for more than 90% of the mortality caused by solid tumors [4,5]. Therefore, the
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molecular mechanism of metastasis has been extensively studied, and the development
of anti-metastatic drugs has been attempted [4,5]. However, such drugs are not on the
market yet.

The events of cancer metastasis are complex. One of the important biological events
leading to metastasis is the epithelial to mesenchymal transition (EMT) [6,7], in which
epithelial cancer cells undergo morphological changes to spindle-like mesenchymal cells
with less adhesion between cell-to-cell junctions, ultimately acquiring migratory and
invasive capabilities [8]. During EMT, epithelial cells lose their E-cadherin protein localized
in the plasma membrane and upregulate the expression of N-cadherin and vimentin.
E-cadherin maintains cell adhesion and epithelial structure, while N-cadherin and vimentin
increase cell mobility and contribute to the morphological changes of the cell, making them
important markers of EMT. EMT is driven by the induction of transcription factors, such as
Snail1 and zinc finger E-box binding homeobox 1 (Zeb1) [9,10]. These transcription factors
are known to be induced by various cytokines and their downstream signaling depending
on the cell type [11].

For example, transforming growth-factor β (TGF-β) is a major inducer of EMT in
non-small-cell lung cancer (NSCLC) cells via Smad-dependent and Smad-independent
pathways [12,13]. Furthermore, it has been reported that the suppression of these signals
inhibits EMT [14,15]. Therefore, TGF-β signaling may be a target of anti-EMT drugs. To date,
several classes of inhibitors targeting TGF-β or its receptor have been developed, and some
have been clinically tested. Such known agents include TGF-β-neutralizing antibodies,
ligand traps that block the interaction between TGF-β and its receptors, and selective small
molecules targeting the TGF-β receptor or its kinase inhibitors [16]. One particular example
is the low-molecular-weight TGF-β receptor inhibitor, LY3200882, which showed great
potential in both in vitro cell models and in vivo animal models [17]. However, as TGF-β
has multifaceted functions whose inhibition has led to profound side effects, such inhibitors
have not been approved yet [18]. Furthermore, to the best of our knowledge, there are no
inhibitors targeting downstream TGF-β signaling.

We previously reported a low-molecular weight compound, HPH-15 (Figure 1A),
which blocked the TGF-β Smad-dependent signaling in dermal fibroblasts and improved
skin fibrosis in a mouse model of systemic sclerosis [19]. Here, we report that HPH-15
exerts anti-cell migration and anti-EMT activities in NSCLC cells by downstream targeting
of TGF-β signaling, which is a new mechanism as far as we know.
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Figure 1. Anti-cell migration activity of HPH-15. (A) Structure of HPH-15. (B) and (C) Viability of
A549 cells treated with HPH-15. After incubation of the cells for 1 (B) or 2 d (C) in the presence of
various amounts of HPH-15, MTT assays were performed. Relative values are shown. (D) Migration
of TGF-β-stimulated A549 cells treated with HPH-15. In vitro scratch assays of the cells, incubated in
the presence of various amounts of HPH-15 and TGF-β (10 ng/mL) for 1 d, were performed. Relative
values are shown. * p < 0.05, *** p < 0.001; n.s.—not significant compared with samples without
HPH-15 as in (B,C), and without HPH-15 but with TGF-β as in (D).

2. Results

The anti-migration activity of HPH-15 was examined using a TGF-β-stimulated
NSCLC cell line. HPH-15 was synthesized as previously described [20]. The A549 cell
line [21], a widely used NSCLC cell line, was used in this study. Before the assay, the toxicity
of HPH-15 in the A549 cells was examined. The cells were incubated with 0.1–50 µM of
HPH-15 for 1 or 2 d, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay was performed. It was demonstrated that 0.1–10 µM of HPH-15 did not show
toxicity in both 1 and 2 d incubation but was toxic at 50 µM of HPH-15 in 2 d incubation
(Figure 1B,C). Then, 1–10 µM of HPH-15 was used to examine its effect on anti-cell mi-
gration activity. The activity was evaluated using an in vitro scratch assay, in which cell
migration over 1 d in wound areas of TGF-β-stimulated A549 cells treated with HPH-15
was measured (Figure 1D). In the presence of TGF-β, the cellular area increased more than
in the absence of TGF-β due to cell migration. Nearly 40% of this migration was suppressed
by 5 µM of HPH-15, and HPH-15 completely inhibited cell migration at 10 µM.

Next, we examined the anti-EMT activity of HPH-15. It has been reported that TGF-β
stimulation induces EMT in A549 cells [22]. A549 cells were incubated with TGF-β and
HPH-15 (10 µM) for 3 d, and cell morphology was observed under a microscope. A549 cells
normally gathered, and there were almost no spaces inside a cell cluster in the absence of
TGF-β (Figure 2A). When stimulated with TGF-β, the cell morphology changed to a spindle
shape, and spaces were observed between cells. In the presence of both TGF-β and HPH-15,
the cell changed the morphology to that similar to normal cells without spaces. A549
cells incubated with both TGF-β and HPH-15 were lysed and immunoblot analysis was
performed. It was followed by normalization of total proteins to observe the levels of EMT
marker proteins (Figure 2B,C). TGF-β treatment decreased the levels of the epithelial marker
E-cadherin and increased those of the mesenchymal markers N-cadherin and vimentin.
These changes were suppressed by the HPH-15 treatment. E-cadherin and vimentin protein
levels in these cells were also observed by immunostaining. E-cadherin and vimentin
were normally localized in the membrane and cytoplasm, respectively (Figure 2D). In the
presence of TGF-β and both TGF-β and HPH-15, the same relative amounts of protein
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as seen in Figure 2B,C were observed. Furthermore, vimentin expression spread in the
spindle-shaped area with TGF-β. Next, the mRNA levels of the marker proteins in the
cells were examined. After A549 cells were incubated with TGF-β and HPH-15 (10 µM)
for 1 d, RNA was extracted, and RT-PCR was performed (Figure 2E). The results showed
that TGF-β inhibited the transcription of E-cadherin and enhanced the transcription of
N-cadherin and vimentin. Then, HPH-15 suppressed the effects of TGF-β. These results
demonstrate that 10 µM of HPH-15 has inhibitory activity against TGF-β-induced EMT.
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Figure 2. Anti-EMT activity of HPH-15. (A) Morphology of TGF-β-stimulated A549 cells with
HPH-15. After incubating the cells for 3 d in the presence of HPH-15 (10 µM) and TGF-β (10 ng/mL),
cell morphology was observed using a microscope. (B) Protein levels of E-cadherin, N-cadherin,
and Vimentin in TGF-β-stimulated A549 cells with HPH-15. After incubating the cells for 3 d in the
presence of HPH-15 (10 µM) and TGF-β (10 ng/mL), the cells were lysed. The lysate was analyzed
by immunoblotting. (C) Quantification of the amount of E-cadherin, N-cadherin, and Vimentin.
The intensity of the bands in (B) was quantified using ImageJ. Each value was normalized by that
of GAPDH, and relative values are shown. (D) Protein localization of E-cadherin and Vimentin
in a TGF-β-stimulated A549 cell treated with HPH-15. After incubating the cells for 3 d in the
presence of HPH-15 (10 µM) and TGF-β (10 ng/mL), cellular immunostaining was performed for
microscopy. Hoechst33342 was used for nuclear staining. (E) mRNA levels of E-cadherin, N-cadherin,
and Vimentin in TGF-β-stimulated A549 cells treated with HPH-15. After incubating the cells for 1 d
in the presence of HPH-15 (10 µM) and TGF-β (10 ng/mL), RNA was extracted from the cells, and
RT-PCR was performed. Relative values are shown. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with
samples treated with TGF-β and without HPH-15.
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Recently, three-dimension (3D)-cultured cells have been used in cancer studies because
tumors are 3D structures in vivo. Microwells were fabricated, and A549 cells were cultured
for 2 d in each microwell. To demonstrate that A549 spheroids formed, the morphology of
the cells was observed under a microscope, and their hypoxia status was determined using
a chemical probe [23] (Figure 3A). The spheroid was incubated with TGF-β and 10–50 µM
of HPH-15 for 1 d. RNA was extracted from the spheroid, and RT-PCR was performed to
determine the mRNA levels of EMT marker proteins. As shown in Figure 3B, 10 ng/mL
TGF-β suppressed the mRNA level of E-cadherin and increased those of N-cadherin and
vimentin, like that observed in Figure 2E. However, in the spheroid, 10 and 20 µM of
HPH-15 did not show clear anti-EMT activity, while it was able to inhibit EMT at 50 µM.
Notably, 50 µM of HPH-15 was not toxic against normally cultured A549 (Figure 1B) in
1 d incubation. Furthermore, the amounts of mRNA shown in Figure 3B are the value
normalized by that of GAPDH. Thus, the effect of HPH-15 at 50 µM is considered to be
unrelated to its toxicity. A higher concentration of HPH-15 was required in 3D-cultured
cells than in normal 2D-cultured cells.
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Figure 3. Anti-EMT activity of HPH-15 in 3D-cultured cells. (A) Morphology and hypoxic status
of a spheroid containing A549 cells. A549 cells were cultured in a non-adhesive plate for 2 d to
prepare spheroids, and their morphology was observed using a microscope (left). After incubating
the spheroid for 16 h with the hypoxia probe LOX-1, fluorescence microscopy was performed (right).
(B) mRNA levels of E-cadherin, N-cadherin, and Vimentin in a TGF-β-stimulated A549 spheroid (A)
treated with HPH-15. After incubating the spheroid for 1 d in the presence of various amounts of
HPH-15 and TGF-β (10 ng/mL), RNA was extracted from the spheroid, and RT-PCR was performed.
Relative values are shown. * p < 0.05, ** p < 0.01, *** p < 0.001; n.s.—not significant compared with
samples treated with TGF-β and without HPH-15.
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Next, we examined whether HPH-15 exerts its anti-EMT activity via Smad-dependent
pathways. First, the transcription from the Smad-binding element (SBE) was examined
by a reporter assay using a pGL4.48[luc2P/SBE/Hygro] vector (which has SBE fused
to a downstream firefly luciferase gene) and pRL-Luc vector (which carries a β-actin
promoter fused to a downstream Renilla luciferase gene, which served as an internal
control). Cultured A549 cells were co-transfected with these vectors and incubated for
16 h. The cells were then further incubated for 8 h with TGF-β and HPH-15 (10 µM)
before a luciferase assay was performed. TGF-β enhanced Smad-dependent transcription,
which was inhibited by HPH-15 (Figure 4A). Next, the phosphorylation of Smad2 and
Smad3, which plays important roles in Smad-dependent signaling, was examined. After
incubation of A549 cells for 1 d with TGF-β and HPH-15 (10 µM), the cells were lysed, and
immunoblotting was performed (Figure 4B,C). Without TGF-β, definite phosphorylation
of Smad2 and Smad3 was not observed. Upon TGF-β stimulation, both proteins were
phosphorylated; upon HPH-15 treatment, the amount of phosphorylated protein was
reduced by half. Notably, the levels of Smad2 and Smad3 did not change in the presence of
TGF-β or HPH-15. To gain insight into the mechanism of the inhibitory activity of HPH-15,
the time course of Smad2/3 phosphorylation was examined. At 2 h post-stimulation with
TGF-β, phosphorylation of Smad2 and Smad3 began, and phosphorylation continued up
to 8 h (Figure 4D). Smad-dependent signaling is known to express cytokines such as TGF-β
that continue to stimulate this signaling, thereby maintaining the transduction of this
signaling [24]. Phosphorylation was inhibited throughout this time course in the presence
of the TGF-β receptor inhibitor SB525334 [25]. In contrast, while treatment with HPH-15 did
not inhibit phosphorylation at 2 h post-stimulation, and inhibition was eventually observed
after 4 h. These results suggest that HPH-15 does not directly affect Smad-dependent
signaling and inhibits the downstream event of the signaling. In fact, mRNA of TGF-β
expressed by TGF-β was suppressed by HPH-15 at 4 and 24 h post-stimulation (Figure 4E).
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Figure 4. Effects of HPH-15 on a Smad-dependent pathway in TGF-β signaling. (A) The activity of a
reporter product transcribed from a Smad binding promoter in A549 cells. The cells co-transfected
with pGL4.48[luc2P/SBE/Hygro] Vector (with SBE and firefly luciferase gene) and pRL-Luc (with
a β-actin promoter and renilla luciferase gene for internal control) were incubated for 16 h. After
the cells were incubated for another 8 h in the presence of HPH-15 (10 µM) and TGF-β (10 ng/mL),
the cells were lysed. The lysate was analyzed by a dual luciferase assay, and the values obtained
were normalized. Relative values are shown. (B) Protein levels of phosphorylated Smad2 and
Smad3 in TGF-β-stimulated A549 cells treated with HPH-15. After incubating the cells for 1 d in the
presence of HPH-15 (10 µM) and TGF-β (10 ng/mL), the cells were lysed. The lysate was analyzed
by immunoblotting. (C) Quantification of phosphorylation of Smad2 and Smad3. The intensity of the
bands in (B) was quantified using ImageJ. Relative values (band intensity of phosphorylated protein
and that of unphosphorylated protein) are shown as values of “Relative phosphorylation of protein.”
(D) Time course of the amounts of phosphorylated Smad2 and Smad3 proteins in TGF-β-stimulated
A549 cells treated with HPH-15. After incubating the cells for the designated time in the presence of
HPH-15 (10 µM) or SB525334 (10 µM) and TGF-β (10 ng/mL), the cells were lysed. The lysate was
analyzed by immunoblotting. (E) mRNA levels of TGF-β1 (TGF-β) in TGF-β-stimulated A549 cells
treated with HPH-15. After incubating the cells for 4 or 24 h in the presence of HPH-15 (10 µM) and
TGF-β (10 ng/mL), RNA was extracted from the cells, and RT-PCR was performed. Relative values
are shown. ** p < 0.01, *** p < 0.001 compared with samples treated with TGF-β and without HPH-15.

Next, we examined the Smad-independent pathway [12,13]. Similar to the experiment
to observe the Smad-dependent pathway (Figure 4B), the phosphorylation of Akt and
extracellular signal-regulated kinase (ERK) was examined (Figure 5A,B). Upon TGF-β stim-
ulation, phospho-Akt increased, and virtually no phosphorylated ERK was phosphorylated.
HPH-15 inhibited the phosphorylation caused by stimulation. The amounts of Akt and
ERK did not change with TGF-β/HPH-15 treatment.
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Figure 5. Effects of HPH-15 on a Smad-independent pathway in TGF-β signaling. (A) Protein
levels of phosphorylated Akt and ERK in TGF-β-stimulated A549 cells treated with HPH-15. After
incubating the cells for 1 d in the presence of HPH-15 (10 µM) and TGF-β (10 ng/mL), the cells were
lysed. The lysate was analyzed by immunoblotting. (B) Quantification of the phosphorylation levels
of Akt and ERK. The intensity of the bands in (A) was quantified using ImageJ. Relative values (band
intensity of phosphorylated protein and that of unphosphorylated protein) are shown as values of
“Relative phosphorylation of protein.” *** p < 0.001 compared with samples treated with TGF-β and
without HPH-15.

Finally, we focused on the other signaling protein adenosine monophosphate-activated
protein kinase (AMPK), since it has been reported that AMPK activation inhibits EMT
and cell migration [26]. The effect of HPH-15 on AMPK phosphorylation was examined.
A549 cells were incubated for 1 or 3 d with TGF-β and HPH-15 (10 µM) before being lysed
to perform immunoblotting (Figure 6A). Interestingly, AMPK was phosphorylated in the
presence of HPH-15. AMPK was then knocked down using siRNA (Figure 6B), and the
inhibitory activity of HPH-15 on cell migration was examined as described in Figure 1C.
Treatment with HPH-15 showed the same anti-cell migration activity as in both A549 and
AMPK-knockdown cells (Figure 6C). Furthermore, immunoblot analysis using these two
cell lines showed similar anti-EMT activity to those treated with HPH-15 (Figure 6D). These
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results show that HPH-15 activates AMPK, and the activation is not a cause of its anti-EMT
and anti-cell migration properties.
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Figure 6. Effects of HPH-15 on AMPK activation. (A) Protein levels of phosphorylated AMPK in
TGF-β-stimulated A549 cells treated with HPH-15. After incubating the cells for 1 d or 3 d in the
presence of HPH-15 (10 µM) and TGF-β (10 ng/mL), the cells were lysed. The lysate was analyzed
by immunoblotting. (B) Protein levels of AMPK in AMPK-knockdown A549 cells. After transfection
of siRNA into A549 cells and incubation for 1 d, the cells were lysed. The lysate was analyzed by
immunoblotting. (C) Migration of TGF-β-stimulated AMPK-knockdown A549 cells treated with
HPH-15. In vitro scratch assays of the cells, incubated with various amounts of HPH-15 and TGF-β
(10 ng/mL) for 1 d, were performed. Relative values are shown. (D) Protein levels of E-cadherin
and N-cadherin in TGF-β-stimulated AMPK-knockdown A549 cells treated with HPH-15. After
incubating the cells for 3 d in the presence of HPH-15 (10 µM) and TGF-β (10 ng/mL), the cells were
lysed. The lysate was analyzed by immunoblotting. *** p < 0.001 compared with samples treated
with TGF-β and without HPH-15.
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3. Discussion

Previously, we reported a compound named SN-1, which has a cysteamine–pyridine–
cysteamine structure that binds to the zinc sites of proteins [27–29]. Furthermore, we at-
tempted extensive structural modifications by removing and/or introducing
substituents [20,30–33], and achieved improved zinc protein selectivity. HPH-15 is one of
them, and we first reported it as an anti-herpes virus compound [20] (note that “HPH-8” in
reference [20] was later renamed “HPH-15” when the anti-fibrosis activity of HPH-15 was
found [19]). While we classify HPH-15 as one of our metal-binding compounds, the metal
binding property seems minimal due to the bulky tert-butyl groups. The biological activity
of HPH-15 is not directly related to metal binding.

In this study, we focused on the ability of HPH-15 to block the TGF-β Smad-dependent
signaling and investigated its anti-cell migration activity. As expected, 10 µM of HPH-15
showed inhibitory activity against TGF-β-driven EMT and cell migration in NSCLC cells.
Lung cancer is one of the leading causes of cancer-associated deaths [1], and NSCLC is
the most common lung malignancy [34]. Many patients with lung cancer are diagnosed at
an advanced stage, and the prognosis of these patients remains very poor owing to early
cancer metastasis [34,35]. In many cases, NSCLC metastasizes to the brain to develop brain
tumors, which reduces the quality of life of the patients [36].

Mechanistic studies showed that HPH-15 inhibited downstream TGF-β signaling
(Figure 4D). This downstream inhibition blocks the expression of cytokines such as TGF-β
(Figure 4E) that lead to the next cycle of Smad-dependent and Smad-independent signaling.
The action mechanism of HPH-15 to inhibit EMT proposed in this study is shown in Figure 7.
TGF-β inhibitors are expected to be effective drugs against cancer-related diseases, and
various inhibitors targeting TGF-β or its receptor have been developed [16]. However, side
effects were observed, and clinical tests failed [18]. The toxicity is caused by the multifaceted
functions of TGF-β. As far as TGF-β inhibitors go, the mechanism of inhibition by HPH-15
identified in this study is new, and fewer side effects than those observed from inhibitors
targeting the TGF-β receptor are expected.
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It is still unclear what the direct target of HPH-15 is and how it leads to the inhibition
of TGF-β signaling. Its anti-cell migration and anti-EMT properties were unrelated to
AMPK activation activity. While research into the mechanism is ongoing, this study gives
us insight into how to develop it into a clinically used anti-metastatic drug. Furthermore,
the weaker activity seen in 3D-cultured cells (Figure 3) should be improved. Resistance
of 3D-cultured cells to various drugs has been reported [37], and it could be caused by
enhancement of drug efflux [38] and/or difficulty of drugs in entering a cell which tightly
interacts with adjacent cells. The activity of HPH-15 against 3D-cultured cells may be
improved by drug-delivery tactics. This study could lead to the development of new
antimetastatic drugs for NSCLC and other cancers.

4. Materials and Methods
4.1. Chemicals and a Cytokine

HPH-15 was synthesized as previously reported [20] and SB525334 was purchased
from Selleck Biotech (Tokyo, Japan). Each compound was dissolved in dimethyl sulfoxide
(DMSO) (FUJIFILM-Wako, Osaka, Japan) and the solution was added to the cell-culture
medium at a 1:100 volume. TGF-β1 was purchased from R&D Systems (Minneapolis, MN,
USA), and used as TGF-β. TGF-β was added to the cell culture medium, followed by the
addition of a compound before incubation continued for 1 h.

4.2. Cell Culture and Viability

The human NSCLC cell line A549 [21] (provided by the RIKEN BRC through the
National Bio-Resource Project of the MEXT/AMED, Japan (RCB0098)) was maintained in
Dulbecco’s modified Eagle medium/nutrient mixture F-12 (DMEM/F12) supplemented
with 5% heat-inactivated fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis, MO, USA),
89 µg/mL of streptomycin (Meiji Seika Pharma, Tokyo, Japan), and 2.0 µg/mL of am-
photericin B (Clinigen, Burton-on-Trent, UK). Cell morphology was observed using a
BIOREVO BZ-9000 (Keyence, Osaka, Japan). Cell viability was quantified by the MTT assay,
as previously described [39].

4.3. Generation of Cancer Spheroids and Hypoxia Assay

The spheroid culture microwells were fabricated by photolithography of SU-8 (KAYAKU
Advanced Materials, Westborough, MA, USA) on a coverslip. The device consists of eighty-
five microwells with a diameter of 400 µm and a depth of 200 µm. The bottom of each
microwell was coated with Prevelex CC1 (Nissan Chemical, Tokyo, Japan). A549 cells
(1.0 × 106 cells/mL/well) were seeded in spheroid culture microwells. After incubation
for 2 d, an A549 spheroid was formed in each well. The spheroids were incubated with a
hypoxia chemical probe LOX-1 (1 µM) (SCIVAX Life Sciences, Tokyo, Japan) for 16 h to an-
alyze their hypoxic status. Fluorescence generated from LOX-1 and spheroid morphology
was observed using a BIOREVO BZ-9000 (Keyence).

4.4. Protein Knockdown

To knock down AMPK in A549 cells, AMPKα1/2 siRNA (h) (Santa Cruz, Dallas,
TX, USA) was transfected into cells using Lipofectamine 3000 (Thermo Fisher Scientific,
Waltham, MA, USA). Control siRNA-A (Santa Cruz Biotechnology) was used as a control
siRNA. After transfection with siRNA, the cells were incubated for 1 d and used for
subsequent experiments.

4.5. In Vitro Scratch Assay

The assay was conducted as described previously, in which cell migration for 1 d in
wound areas of TGF-β-stimulated A549 cells, prepared by scraping with a 200 µL pipette
tip, was measured [40]. The only difference was that an FBS-free medium was used.
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4.6. Immunostaining of Cells

The assay was conducted as described previously [41]. The differences were as fol-
lows: the primary antibodies used were an E-cadherin Antibody (H-108) (Santa Cruz)
and a Vimentin Antibody (E-5) (Santa Cruz). The secondary antibodies used were a Goat
anti-Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (Thermo
Fisher Scientific), and a Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary Antibody,
TRITC (Thermo Fisher Scientific). After the reaction with the secondary antibodies, a
phosphate-buffered saline (PBS) solution containing 1% Hoechst33342 (Dojindo Labora-
tories, Kumamoto, Japan) was added to the cells and incubated for 15 min. A Zeiss LSM
700 laser-scanning confocal microscope (Carl Zeiss, Oberkochen, Germany) was used for
fluorescence microscopy.

4.7. Immunoblot Analysis

For the analysis of signaling pathways, FBS-free medium was used to culture cells.
Cells were lysed using a RIPA buffer (50 mM Tris-HCl (pH 7.8), 150 mM NaCl, 1% Nonidet
P-40, 0.5% sodium deoxycholate, 1% protease inhibitor cocktail (Nacalai Tesque, Kyoto,
Japan), 1% phosphatase inhibitor cocktail (Nacalai Tesque)), and the protein concentration
of the lysate was determined using a BCA Protein Assay Kit (Thermo Fisher Scientific).
Gel electrophoresis and immunoblotting were performed using 10 µg total protein per
well. As an antibody, E-cadherin Antibody (H-108) (Santa Cruz), N-cadherin Antibody
(13A9) (Santa Cruz), Vimentin Antibody (E-5) (Santa Cruz), Phospho-Smad2 (Ser465/467)
(138D4) Rabbit mAb (Cell Signaling Technology, Danvers, MA, USA), Smad2 (D43B4) XP
Rabbit mAb (Cell Signaling Technology), Phospho-Smad3 (Ser423/425) (C25A9) Rabbit
mAb (Cell Signaling Technology), Smad3 (C67H9) Rabbit mAb (Cell Signaling Technol-
ogy), Smad4 Antibody (B-8) (Santa Cruz), Phospho-Akt (Ser473) (D9E) XP Rabbit mAb
(Cell Signaling Technology), Akt (pan) (40D4) Mouse mAb (Cell Signaling Technology),
Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb (Cell Signaling Technology),
ERK1/2 Antibody (MK1) (Santa Cruz), Phospho-AMPKα (Thr172) (40H9) Rabbit mAb
(Cell Signaling Technology), AMPKα1/2 Antibody (D-6) (Santa Cruz), or GAPDH (0411)
Antibody (Santa Cruz) was used. Immunoreactivity was detected by chemiluminescence
using an ImmunoStar LD (FUJIFILM Wako). Band intensity was quantified using the
ImageJ software (NIH, Bethesda, MD, USA).

4.8. RT-PCR Analysis

The assay was conducted as previously described using the SYBR Green method [40].
Primers for E-cadherin [40], N-cadherin [42], vimentin [43], and TGF-β1 [44] were used
as described previously. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was ana-
lyzed as previously reported [45] and its values were used for normalization.

4.9. Luciferase Activity

A549 cells were co-transfected with a pGL4.48[luc2P/SBE/Hygro] vector (Promega,
Madison, WI, USA) (500 ng) and a pRL-Luc [29] (500 ng) vector using Lipofectamine
3000 (Thermo Fisher Scientific) and incubated for 16 h. HPH-15 was then added and
allowed to continue to incubate for 1 h before TGF-β was added. The cells continued to
incubate for 8 h. The lysate was analyzed using the Dual-Luciferase Reporter Assay System
(Promega). Firefly luciferase (transcribed from pGL4.48[luc2P/SBE/Hygro] Vector) activity
was normalized with Renilla luciferase (transcribed from pRL-Luc) activity.

5. Conclusions

A small molecule, HPH-15, was found to have anti-EMT and anti-cell-migration
properties in NSCLC cells. To the best of our knowledge, the mechanism of inhibition
downstream of TGF-β signaling is new, although inhibitors targeting the TGF-β receptor or
its kinase are known. The elucidation of mechanistic details is ongoing. Cancer metastasis is
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the main cause of mortality in solid tumors, and anti-metastatic drugs are not yet available.
This study could lead to the development of anti-metastasis drugs in the near future.
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4. Gandalovičová, A.; Rosel, D.; Fernandes, M.; Veselý, P.; Heneberg, P.; Čermák, V.; Petruželka, L.; Kumar, S.; Sanz-Moreno,
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